

Supplemental product information and tips for success

Example of read generated by LACE-seq for Illumina:

NNNNT	RPF	NNNN	TCTCCTTGCATAATCACCAACC	Partial Illumina adapter
	J		ιγ	ι <u> γ </u>
5' degenerated sequence consisting of four Ns followed by a 1	Ribosome Protected Fragment	3' degenerated sequence consisting of fo Ns	LACE-seq 3' linker ur	The start of Illumina adapter

Proper trimming of the reads is important for efficient mapping. Here we provide some guidance on the use of cutadapt (Martin, 2011) to trim reads generated by LACE-seq for Illumina.

Trimming is done in 2 steps:

If cells were treated with CHX and processed with Ribolace module 1, reads between 28 nt and 35 nt are expected to show the best 3nt periodicity.

iUDI Plate LACEseq bioIT resource

STEP1

First the LACE-seq linker is trimmed from the 3' end of each read and the first five nucleotides corresponding to the 5' degenerated sequence are removed from the 5' end:

cutadapt --cut 5 -a TCTCCTTGCATAATCACCAACC --discard-untrimmed -o
trim1.fastq input.fastq

Parameter	Definition
cut 5	Removal of the first 5 bases from the beginning of
	each read
-a TCTCCTTGCATAATCACCAACC	Removal of the LACE-seq 3' linker and any sequence
	that may follow
discard-untrimmed	Reads in which no adapter is found are discarded
-o trim1.fastq	The output file name
input.fastq	The input file name

STEP2

The 3'degenerated sequence is then removed from the 3'end of each read, and only reads longer than **X** nt are retained, while shorter are discarded:

cutadapt --minimum-length ${\tt X}$ --cut -4 -o trim2.fastq trim1.fastq

Parameter	Definition
minimum-length X	Reads above X nt are retained (usually X=20 for
	ribosome profiling analysis)
cut -4	Removal of the last 4 bases at the end of each read
-o trim2.fastq	The output file name
trim1.fastq	The input file name must be the same as the output file
	name in step1