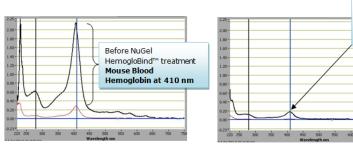

NuGel-HemogloBind[™]

Hemoglobin Capture Reagent From Blood and Hemolyzed Serum with NuGel[™] Matrix

- Has a high degree of specificity for hemoglobin binding up to 10 mg/ml •
- Removes hemoglobin from any species including human, sheep, bovine, goat, etc •
- Removes hemoglobin from organs, tissues. •
- Hemoglobin removal from red blood cell lysate for proteomics and biomarker drug discovery •
- The flow through fractions(hemoglobin depleted) retain their enzymatic and biological activity •
- The flow through fractions(hemoglobin depleted) is compatible with LC-MS, activity based protein • profiling and proteomic studies.

NuGel-Hemoglobind[™] is reengineered for increased stability. It is based on NuGel silica (50 microns in size, 1000Å) covalently bound to elastomeric polyelectrolytes. It binds >95% of hemoglobin from blood.



NuGel HemogloBind™

Diluted Hemolyzed Mouse Plasma After Treatment

Diluted Mouse Blood Before Treatment

Diluted Mouse Blood After Treatment

Product	Size	Total Sample Processed.			Item Price	Price
NuGel-HemogloBind™	25 preps	500µl of blood or 5 ml of Hemolyzed Serum or Plasma			NP-HO-T25	\$450
NuGel-HemogloBind™	50 preps		1 ml of blood or 10 ml of emolyzed Serum or Plasma	NP-HO-T50	\$850	
Items Required			25 Prep	5	0 Prep	Reagent
NuGel-HemogloBind™			1.25 grams	2	.5 gram	Supplied
Hemoglobin Binding Buffer (HB)			15 ml	30 ml		Supplied
SpinX Centrifuge tube filters			25	50		Supplied

Mouse Blood Hemoglobin Depleted at 410 nm

1 Deer Park Drive, Suite M, Monmouth JCT, NJ 08852, USA • (P) 732-274-2866 • (F) 732-274-2899 • www.biotechsupportgroup.com

PROTOCOL – To Treat Blood Sample Using Microfuge Tube

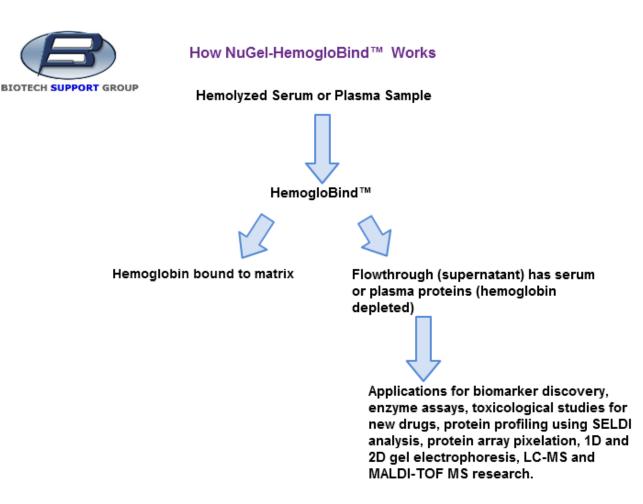
- 1. Weigh out 50 mg of **NuGel-HemogloBind**[™] matrix in a microfuge tube.
- 2. Add 200 μ l of Hemoglobin Binding Buffer to the matrix. Vortex or mix well for 2 minutes at room temperature.
- 3. In a separate microfuge tube, add 200 μl of Hemoglobin Binding Buffer and 10-20 μl of blood sample. Vortex for 3 minutes.
- 4. Add sample from step 3 to sample from step 2.
- 5. Vortex or mix well for 10 minutes at room temperature followed by centrifugation for 4 minutes at 10,000 rpm.
- 6. Collect the filtrate or supernatant which contains hemoglobin depleted sample, while the matrix contains the hemoglobin.

PROTOCOL – To Treat Hemolyzed Plasma or Serum Sample Using Microfuge Tube

- 1. Weigh out 50 mg of **NuGel-HemogloBind™** in microfuge tube and add 400 µl Hemoglobin Binding Buffer. Vortex for 2 minute.
- 2. Add 200 μI Hemolyzed Sample to step 1.
- 3. Vortex or mix well for 10 minutes at room temperature followed by centrifugation for 4 minutes at 10,000 rpm
- 4. Collect the filtrate or supernatant which contains hemoglobin depleted sample, while the matrix contains the hemoglobin.

PROTOCOL – To Treat Blood Sample Using Spin-X Tube

- 1. Weigh out 50 mg of **NuGel-HemogloBind**[™] matrix in a spin-tube.
- 2. Add 200 µl of Hemoglobin Binding Buffer. Vortex or mix well for 2 minutes at room temperature, centrifuge for 2 minutes at 10,000 rpm.
- 3. Discard the supernatant.
- 4. In a separate microfuge tube, add 400 μl of Hemoglobin Binding Buffer to the 10-20 μl of blood sample. Vortex or shake for 3 minutes.
- 5. Add sample from step 4 to the pellet sample from step 3.
- 6. Vortex or mix well for 10 minutes at room temperature, and then centrifuge for 4 minutes at 10,000 rpm.
- 7. Collect the filtrate or supernatant which contains hemoglobin depleted sample, while the matrix contains the hemoglobin.


PROTOCOL – To Treat Hemolyzed Plasma or Serum Sample Using Spin-X Tube

- 1. Weigh out 50 mg of **NuGel-HemogloBind**[™] matrix in a spin-tube and add 200 µl Hemoglobin Binding Buffer. Vortex or mix well for 2 minutes at room temperature, centrifuge for 2 minutes at 10,000 rpm.
- 2. Discard supernatant.
- 3. In a separate microfuge tube, add 400 μ l Hemoglobin Binding Buffer to 200 μ l Hemolyzed sample. Vortex for 3 minutes.
- 4. Add the sample from step 3 to the pellet from step 2. Vortex or mix well for 10 minutes at room temperature followed by centrifugation for 4 minutes at 10,000 rpm

BIOTECH SUPPORT GROUP

5. Collect the filtrate or supernatant which contains hemoglobin depleted sample, while the matrix contains the hemoglobin.

Related HemogloBind™ References

Biological Fluids

J Krupey - United States Patent: 10/180,053, 2002 <u>Removal of extraneous substances from biological</u> <u>fluids containing nucleic acids and the recovery of nucleic acids</u>

Red Cell Lysates

Kyoungsook Park, Christopher D. Saudek, and Gerald W. Hart <u>Increased Expression of β-N-Acetylglucosamindase (O-GlcNAcase) in Erythrocytes from Prediabetic and Diabetic</u> <u>Individuals.</u>Diabetes.2010;59(7):1845-50.

Stored Blood Products

Delobel J., Rubin O., Prudent M., Crettaz D., Tissot J.-D., Lion N.(2010) <u>Biomarker Analysis of Stored</u> <u>Blood Products: Emphasis on Pre-Analytical Issues</u>. International Journal of Molecular Sciences. 11(11):4601-4617

1 Deer Park Drive, Suite M, Monmouth JCT, NJ 08852, USA • (P) 732-274-2866 • (F) 732-274-2899 • <u>www.biotechsupportgroup.com</u>

BIOTECH SUPPORT GROUP

Red Blood Cells

Alvarez-Llamas, G., de la Cuesta, F., Barderas, M. G., Darde, V. M., Zubiri, I., Caramelo, C., Vivanco, F. <u>A</u> <u>novel methodology for the analysis of membrane and cytosolic sub-proteomes of erythrocytes by 2-</u> <u>DE.</u>Electrophoresis.2009;30:4095-4108

Zihao Wang, Kyoungsook Park, Frank Comer1, Linda C. Hsieh-Wilson, Christopher D. Saudek, Gerald W. Hart. <u>Site-Specific GlcNAcylation of Human Erythrocyte Proteins: Potential Biomarker(s) for Diabetes</u> <u>Mellitus</u>. Diabetes.2008;58, 309-317.

Datta, Pradip. <u>Effect of Hemolysis, High Bilirubin, Lipemia, Paraproteins, and System Factors on</u> <u>Therapeutic Drug Monitoring</u>. Handbook of Drug Monitoring Methods.2008; 97-109.

Yuichi Miki, Tomoki Tazawa, Kazuya Hirano, Hideki Matsushima, Shoko Kumamoto, Naotaka Hamasaki, Tomohiro Yamaguchi, Masatoshi Beppu. <u>Clearance of oxidized erythrocytes by macrophages: Involvement</u> <u>of caspases in the generation of clearance signal at band 3 glycoprotein</u>. Biochemical and Biophysical Research Communications.2007; 363(1):57-62

Sarawathi, et al., <u>Relative quantification of glycated Cu-Zn superoxide dismutase in erythrocytes by</u> <u>electrospray ionization mass spectrometry</u>, Biochimica et Biophysica Acta. 1999.1426(3):483-90

Bilirubin

Person, N.B., Effect Of HemogloBind[™] On Interference Reduction In Bilirubin Analysis.poster Clinichem, 1995.

Serum

Baion, C.M. & Ali, A.C.<u>Evaluation Of HemogloBind[™] For Removal Of O-Raffinose Crosslinked Hemoglobin</u> (Hemolink[™]) From Serum, poster AACC Meeting 1997.

Tissue

Padilla, S., Convenient Method for Decreasing the Amount of Hemoglobin in Tissue Samples Without Affecting the Level of Cholinesterase Activity, unpublished personal correspondence, 1994.

CONTACT US

We welcome your questions, comments and concerns regarding our products.

- Call 732-274-2866, Monday Friday 9am-6pm EST.
- Fax732-274-2899Emailsales@biotechsupportgroup.comMail1 Deer Park Drive, Suite M, Monmouth JCT, NJ 08852, USA